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A fast and stable method is proposed for calculating the shielding current density in a high-temperature superconducting film
containing cracks. After discretized with the finite element method, the initial-boundary-value problem of the shielding current
density reduces to semi-explicit differential algebraic equations (DAEs). Although the DAEs can be solved with standard ordinary-
differential-equation (ODE) solvers, much CPU time is required for its numerical solution. In order to shorten the CPU time, a
high-speed method is proposed. In the method, the block LU decomposition is incorporated into function evaluations in ODE solvers.
A numerical code is developed on the basis of the proposed method and, as an application of the code, detectability of cracks by
the scanning permanent-magnet method is numerically investigated.
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1. INTRODUCTION

ECENTLY, a high-temperature superconductor (HTS)

has been used for numerous engineering applications:
magnet, energy storage system, power cable and magnetic
shielding apparatus. Since evaluation of the shielding current
density is indispensable for the design of engineering appli-
cations, several numerical methods [1]-[3] have been so far
proposed to calculate the shielding current density.

After discretized with the implicit scheme and the finite
element method (FEM), an initial-boundary-value problem of
the shielding current density is transformed to a problem in
which nonlinear algebraic equations have to be solved at each
time step. Although this method can be also applied to the
shielding current analysis in an HTS film containing cracks, it
is extremely time-consuming. This method is called a virtual
voltage method [2], [4].

The purpose of the present study is to develop a fast and
stable method for analyzing the shielding current density in
an HTS film containing cracks and to numerically investigate
the scanning permanent-magnet method (SPM) [4], [5].

II. GoverNING EQuATIONS

We first assume that an HTS film has the same cross section
Q over the thickness and that it is exposed to the time-varying
magnetic field B/ug. Furthermore, the HTS film is assumed
to contain m cracks whose cross sections are curved segments
in the xy plane. Note that the boundary dQ of Q is composed
of not only the outer boundary C, but also crack surfaces
Ci,Cy, -+ ,Cy. In the following, x and a’ denote position
vectors of two points in the xy plane and ¢ is a unit tangent
vector on 0L2. In addition, » denotes a film thickness.

In HTS films, the electric field E and the shielding current
density j are closely related to each other through the J-E
constitutive relation. As the relation, we assume the following
power law [2]-[4], [6]: E = Ec(|jl/jc)" [4/17]], where jc and

Ec denote the critical current density and the critical electric
field, respectively, and N is a positive constant.

Under the thin-plate approximation, there exists a scalar
function T'(x,?) such that 5 = (2/b)V x (Te,), and its time
evolution is governed by the following equation [1], [2], [4]:
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Here, ( ) denotes an average operator over the thickness and
the definition of W is given in [4].

The initial and boundary conditions to (1) are assumed as
follows: T =0atr=0, T € H(Q), and h(E) = ﬁc’ E-tds=0
(i =1,2,---,m). Here, HQ) is a function space defined by
H(Q) = {w(x):w=0 on Cy, dw/ds=0 on U C;}, and s
is an arclength along crack surfaces C,Cy,- - ,Cy,.

III. NumEericAL METHODS

After spatially discretized with the FEM, the initial-
boundary-value problem of (1) reduces to the following semi-
explicit differential algebraic equations:

[Wu W12] % = f1(t,T),
where T' € R” is a nodal vector originating from 7'(x,t) and
f1(t,T) € R*™ is a vector calculated from the right-hand
side of (1). Here, n denotes a total number of nodes and
it is assumed to satisfy n > m. In addition, W;; and Wi,
are an (n — m) X (n — m) matrix and an (n — m) X m matrix,
respectively, and g(T') € R™ is a vector corresponding to
hi(E) =0 (i = 1,2,--- ,m). Incidentally, (1) is obtained by
means of an integral approach and, hence, discretization of an
air region is unnecessary.

Since (2) shows an index-1 property, it can be rewritten as
the following ordinary differential equations:
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Fig. 1. The CPU time 7cpy as functions of the number n of nodes for the
case with m = 1. Here, Tcpy is measured for the simulation of the SPM in
which values of parameters in Section IV are used.

where f(t,T) € R" is defined by
W) f,T)= f(T). 4)
Here, W(T') and f*(¢,T') are given by

Wi Wiz * J1(0,T)
W) = [W21<T) Wn(T)]’ FeD= [ 0 ]
In addition, W, (T") and Wx(T') are an m X (n — m) matrix
and an m X m matrix, respectively, and they are given by
[W]z(T) W22(T)] = 0g/dT, where 0g/0T is a Jacobian
matrix. In the present study, the initial-value problem of (3)
is numerically solved by means of the Sth-order Runge-Kutta
method with the adaptive step-size control algorithm [7].

In the Sth-order Runge-Kutta method, 6 evaluations of
f(, T) are needed at each time step. In other words, 6 linear
systems such as (4) have to be solved for f(z,T") at each time
step. As is apparent from the definition of W(T'), neither Wy
nor Wy, depends on T'. Hence, if we have already obtained
the LU decomposition of Wy;, O(n?) operations are required
for solving (4). This means that only O(n?) operations are
needed at each time step of the proposed method. In contrast,
O(n*) operations are necessary at each time step of the virtual
voltage method.

Let us compare the speed of the proposed method with that
of the virtual voltage method. The dependence of the CPU
time Tcpy on the number of nodes is depicted in Fig. 1. As
expected, the proposed method is faster than the virtual voltage
method for the case with n > 10°. Especially, for the case with
n = 3007, the execution of the virtual voltage method was
forced to be terminated because the CPU time had exceeded
the upper limit, 8.64x 10* s. Hence, for this case, the proposed
method is over 5.3 times faster than the virtual voltage method.
From these results, we can conclude that the proposed method
could be effective especially for a large-sized shielding current
analysis in an HTS film containing cracks.

IV. ArppLicATION TO SPM

On the basis of the method explained above, a high-speed
numerical code has been developed for analyzing the time
evolution of j. By using the code, crack detection with the
SPM is investigated. In the following, Q is assumed to be a
rectangle of length / and width w, and its longitudinal direction
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Fig. 2. Dependences of the defect parameter d on the scanning position xa.
Here, A: a = 10 mm and B: a = 20 mm.

is taken as x-axis. In addition, cross sections of two cracks
are assumed to be the following two line segments in the xy
plane: a line segment connecting two points, (—a/2,+L./2),
and a line segment connecting two points, (a/2, +L./2).

In the SPM, a cylindrical permanent magnet of radius R and
height H is moved along the film surface and, simultaneously,
an electromagnetic force acting on the film is monitored. In
the following, the symmetry axis of the magnet is denoted
by (x,¥) = (xa,ya), and its movement is assumed as xp =
+(vt — 1/2) = x.(¢) and yo = const. Here, v is a scanning
speed. The physical and geometrical parameters are fixed as
follows: R = 0.8 mm, H = 2 mm, jc = 1.0 MA/em?, Ec = 1
mV/m, N =20,b=1pum,! =32 mm, w =10 mm, L, =2
mm, yo = 0 mm, and v = 10 cm/s.

Let us numerically investigate whether or not two cracks
can be distinguished by the SPM. Dependences of the defect
parameter d [4] on xa are numerically determined for a =
10 mm and for a = 20 mm, and they are depicted in Fig. 2.
This figure indicates that |d| does not vanish even at xo = 0
mm for the case with ¢ = 10 mm. In contrast, |d| = 0 mN is
fulfilled there for the case with @ = 20 mm. In other words,
two cracks are regarded as a single crack for the case with a
= 10 mm, whereas they are completely distinguishable for the
case with @ = 20 mm. This result implies that multiple cracks
will remarkably affect resolution of the SPM.
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